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The weakly nonlinear stability of viscous fluid flow past a flexible surface is analysed
in the limit of zero Reynolds number. The system consists of a Couette flow of a
Newtonian fluid past a viscoelastic medium of non-dimensional thickness H (the ratio
of wall thickness to the fluid thickness), and viscosity ratio µr (ratio of the viscosities
of wall and fluid media). The wall medium is bounded by the fluid at one surface
and two different types of boundary conditions are considered at the other surface of
the wall medium – for ‘grafted’ gels zero displacement conditions are applied while
for ‘adsorbed’ gels the displacement normal to the surface is zero but the surface is
permitted to move in the lateral direction. The linear stability analysis reveals that for
grafted gels the most unstable modes have α ∼ O(1), while for adsorbed gels the most
unstable modes have α→ 0, where α is the wavenumber of the perturbations. The
results from the weakly nonlinear analysis indicate that the nature of the bifurcation
at the linear instability is qualitatively very different for grafted and absorbed gels.
The bifurcation is always subcritical for the case of flow past grafted gels. It is found,
however, that relatively weak but finite-amplitude disturbances do not significantly
reduce the critical velocity required to destabilize the flow from the critical velocity
predicted by the linear stability theory. For the case of adsorbed gels, it is found
that a supercritical equilibrium state could exist in the limit of small wavenumber
for a wide range of parameters µr and H , while the bifurcation becomes subcritical
at larger values of the wavenumber and there is a transition from supercritical to
subcritical bifurcation as the wavenumber is increased.

1. Introduction
The dynamics of fluid flow past flexible solid surfaces is qualitatively different from

that past rigid surfaces because of the coupling between the fluid and wall dynamics,
and the elasticity of the flexible surface could affect the transition from laminar to
turbulent flow. Experiments conducted by Krindel & Silberberg (1979) in a gel-walled
tube indicate that there is an anomalous drag force at Reynolds numbers (Re) as low
as about 600, and the authors concluded that this is due to a transition to a turbulent
flow at a Reynolds number which is far lower than the critical Reynolds number
for the flow through a rigid tube (around 2100). Motivated by these experimental
results, there has been renewed interest in the understanding of the stability of fluid
flow through flexible channels and tubes (Kumaran, Fredrickson & Pincus 1994;
Srivatsan & Kumaran 1997; Kumaran 1995, 1996, 1998a, b; Shankar & Kumaran
1999). These studies have focused on the linear stability of the fluid flow, where
‘small’ disturbances are imposed on the laminar flow and their temporal evolution is
determined by solving the linearized governing equations. The interesting possibility



338 V. Shankar and V. Kumaran

of the flow being unstable even in the absence of fluid inertia (zero Reynolds number)
was reported in Kumaran et al. (1994) and Kumaran (1995). The Reynolds number
of flows in the biological realm is often very low (typically ∼ 10−2). Fluid inertia
is negligible at such low Reynolds numbers, and the dynamics is determined by a
balance between viscous stresses in the fluid and elastic stresses in the flexible medium.
Kumaran et al. (1994) studied the linear stability of the Couette flow of a Newtonian
fluid past a viscoelastic medium of finite thickness in the zero Reynolds number limit.
Their analysis revealed that the flow could be unstable when the non-dimensional
velocity of the top plate (Vµ/GR) exceeds a critical value. Here V is the dimensional
velocity of the top plate, µ is the viscosity of the fluid, G is the shear modulus of the
gel, and R is the thickness of the fluid. A similar instability was predicted for the case
of flow through a flexible tube by Kumaran (1995). The physical mechanism driving
this instability is the transfer of energy from mean flow to fluctuations due to the
deformation work done by the mean flow at the interface. When this rate of energy
transfer exceeds the viscous dissipation of energy, the flow becomes unstable (see
Kumaran 1995 for a detailed energy balance argument). This zero Reynolds number
instability is qualitatively different from the instability at the interface between two
Newtonian viscous fluids (Hooper & Boyd 1983), which requires fluid inertia for
destabilization (for a physical argument, see Hinch 1984).

Recently, Kumaran & Muralikrishnan (2000) conducted experiments to study the
stability of viscous flow past a polymer gel in a related geometry, and the Reynolds
number in their study was maintained below Re ∼ 10−1. The experiments were carried
out using the parallel plate geometry of a rheometer, where a sheet of polyacrylamide
gel of thickness about 4.5 mm was placed on the bottom plate, and a highly viscous
fluid (a silicone oil) of thickness ranging from 300µm to 1000 µm was placed on the
surface of the gel, and the fluid was sheared at the top by a moving rigid plate. The
rheometer was operated in the stress controlled mode, where the stress on the top
rigid plate of the rheometer was increased at a constant rate. The strain rate and
the apparent viscosity (assuming the flow in the gap is laminar) were recorded. These
experiments showed that there was an anomalous increase in the apparent viscosity
(determined by assuming the flow is laminar) above a certain strain rate. This implies
that the laminar flow becomes unstable to a more complicated flow. The critical
velocity required for initiating the instability in the experiments was found to be in
good agreement with the theoretical predictions of Kumaran et al. (1994), with no
adjustable parameters, for a wide range of gel thicknesses and elastic moduli. Thus,
the linear instability of viscous flow past a flexible surface is now understood both
from experimental and theoretical standpoints.

The objective of the present study is to determine the nature of the Couette flow
past a flexible surface after it becomes linearly unstable in the limit of zero Reynolds
number. The weakly nonlinear stability analysis is employed here to determine the
nature of the bifurcation (supercritical/subcritical) that occurs after the linear in-
stability. A majority of previous theoretical efforts based on the weakly nonlinear
analysis have centred around the derivation of the ‘Landau equation’ for the ampli-
tude of the most (linearly) unstable mode (Drazin & Reid 1981). The means to derive
the Landau constants from the governing equations of fluid dynamics are based on
the pioneering works of Stuart (1960) and Watson (1960) or variants of these theories.
The usual source of nonlinearities in conventional fluid flow problems through rigid
channels is the convective nonlinearities in the governing Navier–Stokes equations. In
the present study, however, the interest is in the zero Reynolds number limit, and the
convective nonlinearities are neglected this limit. Nonlinearities appear in the present
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problem due to the boundary conditions at the interface between the fluid and the
wall medium, for the following reason. In the case of problems involving two adjacent
continua (like fluid–fluid or fluid–flexible solid), the boundary conditions such as the
velocity and stress continuities have to be applied at the interface between the fluid
and the wall medium. However, the position of the interface itself is not known, and
has to be determined as a part of the solution. In a weakly nonlinear treatment of the
problem, the amplitude of the interfacial position is assumed to be small enough so
that a perturbative expansion is valid, and the quantities at the unknown interface are
expanded in a Taylor series about their values at the unperturbed interface (Joseph
& Renardy 1993, p. 183) to the desired order. It is clear that such a procedure would
yield nonlinearities in the boundary conditions. There have been some previous stud-
ies which have dealt with the weakly nonlinear stability of the two dimensional plane
Poiseuille flow past compliant surfaces (Pierce 1992; Rotenberry & Saffman 1990;
Rotenberry 1992; Thomas 1992). These studies have examined the limit of moderate
to high Reynolds number, and in this limit nonlinearities are present in both the
governing equations and the boundary conditions. In the present study, attention is
restricted to the zero Reynolds number limit, and nonlinearities arise mainly due to
the boundary conditions at the interface.

There are two major motivations for the present weakly nonlinear analysis. First,
the possibility of a non-laminar stationary state in the limit of zero Reynolds number
for a shear flow past a flexible surface has not been examined so far. Such non-
laminar supercritically stable states, if they exist in the zero Reynolds number limit,
are unique features of flow past flexible solid surfaces. Secondly, if the flow is
subcritically unstable, the reduction in the critical velocity required for instability
from its linear theory value can be calculated from the weakly nonlinear analysis
by prescribing a particular level for the finite disturbances. This calculation can
be used to determine whether the critical velocity predicted by the linear theory is
an accurate estimate of the velocity at which the instability occurs in practice. In
particular, such a study has been carried out for the case of plane Poiseuille flow in
a rigid channel (Reynolds & Potter 1967), where it was found that even weak but
finite disturbances result in a drastic reduction in the critical Reynolds number. It is
therefore of interest to determine, when the flow is subcritically unstable in the present
case, whether finite disturbances lead to significant reduction in the critical velocity
required for instability. Apart from these two main motives, a detailed understanding
of the asymptotic solutions in the zero Reynolds number limit could be used as
a starting point to probe the stability of finite Reynolds number flows, where it is
necessary to solve the governing equations numerically. The outline of the rest of this
paper is as follows. In § 2, the governing equations and the boundary conditions are
provided, and the linear stability characteristics of the system are briefly outlined,
both for grafted and adsorbed gels. In § 3, the weakly nonlinear perturbation scheme
is described in detail, and the method of determination of the Landau constant for
the present problem is discussed. In § 4, the results for grafted and adsorbed gels are
discussed, and § 5 summarizes the salient conclusions of the present study.

2. Problem formulation and governing equations
The system consists of a Newtonian fluid of density ρ, viscosity µ and thickness

R (occupying the region 0 < y∗ < R), flowing past a viscoelastic material of finite
thickness HR (occupying the region −HR < y∗ < 0 in the unperturbed state) with
shear modulus G and viscosity µg . A schematic of the configuration is shown in
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Figure 1. A schematic diagram of the configuration considered in the analysis.

figure 1. Here, quantities with a superscript ∗ are dimensional, and quantities without
the superscript are dimensionless unless stated otherwise. The wall material is assumed
to be incompressible and impermeable to the fluid, and the conservation equations
are similar to those used in earlier studies on polymer gels (Harden, Pleiner & Pincus
1991; Kumaran 1993) and in the previous linear stability analyses for flow through
flexible channels and tubes. The fluid is sheared at the top boundary y∗ = R with a
velocity V . This base laminar flow exerts a shear stress on the wall, and there is a
mean strain in the wall in the base state. The wall medium (often referred to as ‘gel’
in the following discussion) is at rest in the unperturbed base state, since the velocity
of the fluid at the unperturbed interface is zero. The velocities are scaled by GR/µ,
time by G/µ, lengths by R, and the pressure in the fluid and the gel by G. The ratio
between gel and fluid viscosities is denoted by µr = µg/µ. The zero Reynolds number
limit is considered, and inertial stresses are neglected in both the fluid and the gel.
The scaled governing equations in the fluid and the wall medium are

∂ivi = 0, ∂jτij = 0, (1)

∂iui = 0, ∂jσij = 0. (2)

Here and in what follows, the indices i and j represent the Cartesian directions x
and y, and repeated indices imply a summation over that index. In (1) τij is the total
stress tensor in the Newtonian fluid and it has the usual form:

τij = −pfδij + (∂ivj + ∂jvi), (3)

where vi denotes the velocity in the fluid. The gel is assumed to be an incompressible
viscoelastic continuum, and the total stress tensor is given by the sum of an isotropic
part, an elastic part proportional to the strain and a viscous part proportional to the
strain rate:

σij = −pgδij + (∂iuj + ∂jui) + µr(∂iv
g
j + ∂jv

g
i ). (4)

Here ui(x) is the Eulerian displacement field and vgi is the Eulerian velocity.
The boundary conditions at the interface between the gel and the fluid are the

continuity of normal and tangential velocities and stresses. At the bottom boundary
y = −H (see figure 1), two different types of boundary conditions are considered,
following Kumaran (1993). For ‘grafted gels’, the polymer molecules in the gel are
anchored to the rigid surface at y = −H (see figure 1), and zero displacement
conditions are appropriate:

uy = 0, ux = 0. (5)
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Figure 2. Neutral stability curve from the linear theory for grafted gels:
µr = 0 and H = 1 and H = 5.

This boundary condition was used in our previous studies (Kumaran et al. 1994;
Kumaran 1995) on flow through flexible channels and tubes. For ‘adsorbed gels’ the
polymer chains in the gel are permitted to move along the surface at y = −H and
hence the appropriate boundary conditions are

uy = 0, ∂yux = 0. (6)

This boundary conditions was used by Kumaran (1993) to study the thermodynamics
of surface fluctuations in polymer gels. That study showed that there are significant
differences between the behaviour of grafted and adsorbed gels in the equilibrium
correlation functions at the free surface of the gel. Therefore, it is of interest here to
study the stability of flow past flexible walls for both these boundary conditions at
y = −H .

2.1. Linear stability theory

2.1.1. Grafted gels

For grafted gels, the base velocity profile is the Couette flow with velocity Γ ≡
Vµ/GR at y = 1 and the base flow velocity is zero at the interface y = 0, and the
base velocity profile is given by Γy. The linear stability of Couette flow past a flexible
surface was analysed by Kumaran et al. (1994) for the case of grafted gels, using a
temporal stability analysis. It was shown that for fixed values of µr and H , the flow
becomes linearly unstable when Γ is greater than a critical value Γc. An important
feature is the shape of the ‘neutral stability curve’, which shows the variation of the
transition velocity Γ with wavenumber α. For grafted gels, the critical point, which
is the minimum of the neutral stability curve, is at a non-zero value of α, as shown
in figure 2. Perturbations of all wavelengths are stable below this value of Γc, while
perturbations with wavenumber αc become unstable at Γ = Γc. For grafted gels, αc
is O(1) when H is O(1), and αc scales as H−1 for H � 1.
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2.1.2. Adsorbed gels

For the case of fluid flow past adsorbed gels, with the top place at y = 1 moving
with a non-dimensional velocity Γ , the base flow velocity profile is determined as
follows. The base flow velocity in the fluid exerts a constant shear stress in the gel
surface at y = 0. However, for adsorbed gels, since the bottom boundary at y = −H
has traction-free boundary conditions, it is necessary to postulate a constant (mean)
pressure gradient in the gel medium which balances the fluid shear stress at the
interface. This mean pressure gradient in the gel medium is transmitted to the fluid
through the normal stress continuity condition, which gives rise to a Poiseuille flow
component in addition to the base Couette flow. This combined Couette–Poiseuille
flow is determined by solving the governing equations in the fluid and the gel coupled
by the continuity conditions at the interface. Here, we look for unidirectional velocity
and displacement fields in the x-direction, and hence the normal stress boundary
condition requires the pressure in the fluid and the gel to be the same. This constant
pressure gradient P̄ is determined from the tangential stress continuity condition. It
can be readily verified that the unidirectional solution to the base state velocity profile
is given by

v̄x = Γ [y + (y2 − 1)/(2H + 1)− (y − 1)/(2H + 1)]. (7)

In the zero Reynolds number limit, the stability theory requires only the gradient of
the base flow at the interface (y = 0). Using the above expression to calculate the
velocity gradient of the base flow, the linear stability of flow past an ‘adsorbed’ gel
is then easily determined using methods similar to that in Kumaran et al. (1994).
The neutral stability curve, shown in figure 3, is significantly different from that for
grafted gels, and has a minimum at α = 0. This is because the strain energy required
to deform the surface is much lower in the adsorbed gel when compared to a grafted
gel (Kumaran 1993). The behaviour of the neutral curve as α → 0 can be obtained
through an asymptotic analysis in small α, and this shows that Γ for neutral modes
behaves as Γ = Γ (0) + α2Γ (1) + · · · for small α. The real part of the growth rate scales
as α2 and the imaginary part scales as α in the limit α � 1. This behaviour was
observed for a wide range of parameters µr and H .

3. Weakly nonlinear analysis
In this section, the weakly nonlinear analysis for the present problem is outlined, and

the differences between the present analysis and the previous studies are highlighted.
As mentioned in § 1, the nonlinearities arise in the present problem due to the
boundary conditions at the interface, and the formulation of the boundary conditions
is first discussed. The velocity perturbation is zero at the top plate y = 1, and the
‘grafted’ or ‘adsorbed’ gel boundary conditions discussed in the previous section are
applied at y = −H . The boundary conditions at the interface between the gel and the
fluid are the continuity of normal and tangential velocities and stresses. The position
of the interface in the perturbed state is different from that in the base state y = 0,
and this has to be obtained as a part of the solution. Consider a material point on
this unperturbed interface (x, 0). The position changes to x + ξ(x), η(x) due to the
perturbations, where ξ(x) and η(x) are the x- and y-components of the Lagrangian
displacement of the material point at the interface. The components of the Eulerian
displacement field u at the perturbed surface are given by

ux(x+ ξ, η) = ξ, uy(x+ ξ, η) = η. (8)
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Figure 3. Neutral stability curve from the linear theory for adsorbed gels:
µr = 0 and H = 1, 5 and 10.

An infinite series representation for ξ and η can be obtained using the above definition,
and these expansions can be used to the desired order in the weakly nonlinear theory.
The matching conditions (stress and velocity continuity) at the interface are applied
at the perturbed interface, (x+ ξ, η), and these are given by

vfx |x+ξ,η = vgx|x+ξ,η, vfy |x+ξ,η = vgy |x+ξ,η, (9)

τxy|x+ξ,η = σxy|x+ξ,η, τyy|x+ξ,η = σyy|x+ξ,η, (10)

where τij is the stress tensor in the fluid and σij is the stress tensor in the gel. The
boundary conditions at the interface have the generic form F |x+ξ,η = G|x+ξ,η where F
and G respectively denote fluid and gel quantities, and ξ, η are obtained as a part
of the solution. For small perturbations, an asymptotic expansion can be used where
the conditions at the perturbed interface are expressed using a Taylor expansion
about their values at the unperturbed interface at (x, 0). In this case, the interface
conditions are correct only to within a certain order of the small parameter. This
procedure is called the ‘method of domain perturbations’, and this has widely been
used in problems involving moving interfaces (Joseph & Renardy 1993). The x- and
y-components of the Eulerian gel velocity vgi are defined as the substantial derivative
of the displacement field:

vgx = ∂tux + vgx∂xux + vgy∂yux, vgy = ∂tuy + vgx∂xuy + vgy∂yuy. (11)

These two equations are linear in vgx and vgy , and hence can be solved to obtain
expressions for vgx and vgy in terms of the displacement fields ux and uy and their
derivatives. The resulting expression is nonlinear in the displacement quantities, and
in the present weakly nonlinear analysis the Eulerian velocities are expanded in a
series for small ui. The resulting expansions for the Eulerian velocities in the gel
are nonlinear in terms of the Eulerian displacements, and hence the gel momentum
equations are nonlinear in general. However, the gel equations become linear in the
absence of viscosity in the gel (µr = 0).
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The weakly nonlinear analysis for grafted gels is discussed first, and the modifica-
tions required for the case of adsorbed gels are outlined at the end of this section. For
grafted gels, the neutral curve has a minimum at non-zero α. The values of Γ and α
corresponding to this minimum are denoted by Γc and αc. When Γ is slightly above
Γc, the dynamics will be dominated by the most unstable mode with wavenumber
αc and its higher harmonics generated due to self-interactions. It is convenient to
define E(x, t) = exp i(αcx+ωt)] where ω is the frequency of the perturbations. In the
weakly nonlinear expansion, the dynamical quantities are separated into the laminar
component (φl) and the fluctuating component, and the fluctuating component is
expressed as an amplitude and harmonic expansion (Stuart 1960; Watson 1960):

φ(x, y, t) = φl(y) +

∞∑
k=0

∞∑
n=k,n 6=0

(A1(τ))
n[Ekφ̃(k,n)(y) + E−kφ̃†(k,n)(y)], (12)

where superscript † denotes a complex conjugate, A1(τ) = εA(τ) is the amplitude
of the wave which varies in the slow time scale τ (to be defined below), ε is a
small parameter that characterizes the initial amplitude of the perturbations, and
A(τ) is an O(1) quantity. In (12) and in the following analysis, the superscript to any
dynamical quantity φ̃(k,n) implies that it has a harmonic index k and asymptotic order
n. A1(τ) is a real quantity, since the temporal oscillations are included in E(x, t), and
E(x, t) = exp[i(αcx+ωt)], where t is the fast time scale at which the wave oscillations
take place. The following Landau expansion is valid in the vicinity of the critical
point (Γc, αc) of the neutral curve:

A1(τ)
−1dtA1(τ) = s0r + A1(τ)

2s1r + · · · . (13)

Here, A1(τ) = εA(τ) where A(τ) is O(1), and ε is the small parameter that characterizes
the amplitude of the disturbances. Here s0r is the real part of the linear growth rate
s0, and s1r is the real part of the first Landau constant s1. Since s0r ∼ (Γ − Γc) near
the neutral curve, s0r is expressed as s0r = (ds0r /dΓ )(Γ − Γc). If s1r is O(1), then the
second term on the right-hand side of (13) is O(ε2), and consistency requires that
(Γ − Γc)ds0r /dΓ ∼ ε2. For definiteness, let (Γ − Γc) = Γ2ε

2, where Γ2 determines
whether the flow is stable or unstable. For a balance between the right- and left-hand
sides of (13), it is necessary to introduce the slow time scale τ in the time derivative
as dt = dt + ε2dr . Since A1(τ) is independent of the fast time scale t, (13) becomes

A−1dτA = Γ2ds
0
r /dΓ + s1rA

2, (14)

where the Landau equation is now independent of ε near the critical point. Similarly,
the frequency of oscillations ω is also expanded in a series

ω = s0i + A(τ)2s1i + · · · , (15)

where s0i is the frequency of perturbations according to the linear theory and s1i is the
modification to the frequency of the perturbations due to self-interactions generated
due to the nonlinearities.

The objective of the rest of the analysis is to determine s1 from the governing
equations of the fluid and the gel, and thus to determine whether the instability is
supercritical or subcritical. All the dynamical quantities are expanded in the amplitude
and harmonic expansion as in (12). In the limit of zero inertia and zero gel viscosity
(µr = 0), the governing equations at different orders are linear and do not contain
any inhomogeneous terms. The boundary conditions for the problem at order (k, n)
contain inhomogeneous terms of order (k, m) for reasons explained above, where
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m < n. Thus, the original nonlinear problem with an unknown interface is reduced to
a hierarchy of linear but inhomogeneous problems, and these are solved sequentially
beginning from k = 1, n = 1. For µr 6= 0, the governing equations in the gel also have
nonlinearities due to the Eulerian representation of the gel velocities in terms of the
Eulerian displacements ui. The differential operators at different k and n are simple
enough to allow analytical solutions at each order. In the interests of brevity, we do not
provide the expressions for governing equations and boundary conditions at various
orders, and the interested reader is referred to Shankar (2000) for further details.
Here we merely provide an outline of the (by now standard) solution procedure.

(i) The problem at order k = 1, n = 1 corresponds to the linear stability analysis
(Kumaran et al. 1994). The eigenvalue of the linear problem Γ and the constants
in the eigenfunctions are determined from the boundary conditions at the interface
y = 0. To determine all the constants, an additional ‘normalization’ condition is
required, which is specified as |ṽ(1,1)

y |y=0 =
√

2.
(ii) The velocity at the order k = 0, n = 2 represents the correction to the mean flow

due to nonlinearities. The fluid continuity equation takes the form ∂yṽ
(0,2)
y = 0, and

after using the boundary condition ṽ(0,2)
y = 0 at the top boundary y = 1, it can easily

be seen that ṽ(0,2)
y = 0 throughout the domain. Similarly, it can easily be concluded

that ũ(0,2)
y = 0 in the gel. Further, p̃(0,2)

f = 0 and p̃(0,2)
g = 0 since the mean pressure

gradient in the Couette flow is zero. The solution for ṽ(0,2)
x is readily obtained using

the condition ṽ(0,2)
x = 0 at y = 1 and the inhomogeneous tangential velocity condition

at y = 0, and the solution for ṽ(0,2)
x is a linear function of y. The solution for ũ(0,2)

x is
obtained using the boundary condition at y = −H and the inhomogeneous tangential
stress condition at y = 0.

(iii) Similarly, the eigenfunctions for ṽ(2,2)
y and ũ(2,2)

y at the order k = 2, n = 2
are obtained analytically, and the inhomogeneous boundary conditions are used to
determine the constants appearing in ṽ(2,2)

y and ũ(2,2)
y .

(iv) The variation of the amplitude A(τ) with the slow time scale appears in the
inhomogeneous terms in the boundary conditions at order k = 1, n = 3. The governing
equations of the fluid are identical to those for k = 1, n = 1, but the equations for
the gel contain inhomogeneous terms due to the nonlinear nature of the Eulerian gel
velocity, which are absent when µr = 0. The homogeneous part of the differential
operator and boundary conditions at the order k = 1, n = 3 are identical to the
k = 1, n = 1 problem. Consequently, the Fredholm solvability conditions (Drazin
& Reid 1981) should be satisfied for the k = 1, n = 3 problem to have non-trivial
solutions. It is necessary to determine the adjoint eigenfunctions of the k = 1, n = 1
problem to this end. On substituting the adjoint eigenfunctions in the solvability
condition, the Landau equation is obtained after taking the real part of the solvability
condition, from which the Landau constant s1 can be read off. For further details, the
interested reader is referred to Shankar (2000). If the real part of the first Landau
constant s1r is positive, then the instability is subcritical, while if s1r is negative the
instability is supercritical. The imaginary part s1i is the correction to the frequency of
the basic wave due to nonlinear self-interactions.

3.1. Modifications for the adsorbed gel problem

The analysis outlined above carries through for the case where the gel is permitted to
move at the bottom plate (y = −H), except for a few modifications which are briefly
explained below. The governing equations at the order k = 0, n = 2 for the fluid are

∂yṽ
(0,2)
y = 0, −P + ∂2

yṽ
(0,2)
x = 0, ∂2

yṽ
(0,2)
y = 0. (16)
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µr αc Γc Re [s1] Im [s1]

H = 1 0 1.45 3.52680 32.713388 4.508961
0.5 1.3 5.23957 30.526829 −5.414918
0.75 1.25 7.57164 28.247901 −6.268525
0.80 1.225 8.50067 27.211807 −5.989048
0.90 1.21 12.11915 25.066276 −4.585820
0.99 1.201 38.59668 22.417563 −1.4728612

H = 2 0 0.875 1.66764 28.388916 −0.5882257
1.0 0.7 2.164447 22.987794 −9.1962394
2.0 0.5 3.31957 20.136629 −14.288666
3.0 0.25 6.91270 23.772963 −32.969592
3.2 0.22 8.69238 22.763930 −37.3070072
3.5 0.16 14.0363 24.0741715 −54.651585

H = 5 0 0.375 0.65835 45.5548444 −4.0702738
1 0.35 0.67642 42.4199290 −4.78980903
5 0.25 0.79707 42.8017640 −16.3943086

10 0.18 1.06362 38.1968291 −33.8443030
20 0.075 3.20798 32.6955271 −90.877898

H = 10 0 0.17 0.326877 105.13686 −29.7340444
1 0.17 0.327903 100.238669 −22.860737
5 0.16 0.334138 91.008872 −14.365128

10 0.15 0.345974 80.458307 −17.736651
20 0.125 0.381342 74.88226 −32.289085

H = 20 0 0.083 0.161800 179.1429090 −109.8956
1 0.0825 0.161859 184.304374 −109.091013

10 0.081 0.162705 198.574548 −74.968425
20 0.08 0.164258 182.367762 −47.90102080

H = 50 0 0.0325 6.4210701× 10−2 364.61357 −313.768022
5 0.0325 6.4218755× 10−2 372.83500 −311.126917

10 0.0325 6.4228535× 10−2 379.35433 −309.304507
20 0.0325 6.4253274× 10−2 396.34186 −299.231062

Table 1. Landau coefficients for the flow past a grafted gel.

The governing equations for the gel are

∂yṽ
(0,2)
y = 0, −P + ∂2

yṽ
(0,2)
x = 0, ∂2

yũ
(0,2)
y = 0. (17)

Here P is the constant pressure gradient that is required to obtain non-trivial solutions
at this order (k = 0, n = 2), and the reason for this pressure gradient is similar to that
given in § 2.1.2 for the base flow past an adsorbed gel. Once the k = 0, n = 2 problem
is solved using the above governing equations, the rest of the analysis, including the
form of the solvability condition, remains the same for both grafted and adsorbed
gels, and the Landau constant is found in an identical manner.

4. Results
4.1. Grafted gel

As mentioned before, the neutral curve for the grafted gel problem exhibits a minimum
at a finite αc, and the Landau coefficient was calculated for a wide range of µr and H
for values for Γ slightly above Γc. The first term in the Landau equation is the linear
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growth rate, and this should be the same as that obtained from the linear stability
theory. This serves as a useful consistency check in the analysis, and this consistency
was verified for all the results reported here. The results for Landau constants are
provided in table 1, where the real and imaginary parts of the Landau coefficients
are presented along with the Γc and αc values (the critical Γ and wavenumber
α, respectively) of the linear neutral curve. It is important to note here that the
numerical values of the Landau constant depend on the normalization condition
used for determining the eigenfunctions of the linear theory. In the present study,
the normalization that ṽ(1,1)

y = (1 + i) at y = 0 has been used. The results of table
1 show that the real part of the Landau constants (Re[s1]) is always positive for
a wide range of parameter values (µr and H), and the bifurcation is subcritical.
This implies that there do not exist any neighbouring supercritically stable stationary
states in the immediate vicinity of the linear neutral curve (to the order to which
the present calculations are performed). The question arises whether this result is
observed experimentally. In the experiments of Kumaran & Muralikrishnan (2000),
when attempts were made to maintain the stress just above the value at which
instability occurred, it was observed that there were large oscillations in the gel of
the same amplitude as the gap width, and these oscillations damaged the surface of
the gel. However, the transition point itself was obtained repeatably if the experiment
was stopped before the damage was caused to the polymer gel. This experimental
observation is consistent with the results from the present weakly nonlinear analysis
for the following reason. If there existed an experimental supercritical stable state
very close to the linear instability, the flow would have settled to a new non-laminar
state, and this would not have led to the oscillations in the polymer gel. Nonetheless,
we are still operating in the Stokes flow limit, and increasing the fluid velocity cannot
cause a transition to turbulence in the conventional sense of the term, and the nature
of the eventual state that would be reached by the flow after the instability remains
unclear at present.

A quantity of interest in subcritically unstable flows is the reduction in the crit-
ical velocity required to destabilize the flow (Γ ) from the value predicted by the
linear theory, Γc, due to the finite-amplitude nature of the disturbances. In these
calculations, the normal displacement of the gel at the interface was taken to be a
representative quantity for the amplitude of the disturbances. The fluctuation in the
normal displacement at the unperturbed interface (y = 0) is, correct to O(ε),

uy|y=0 = u∗y/R = A1c|ũ(1,1)
y |y=0. (18)

Here, uy is the non-dimensional y-displacement which is defined as the ratio of the
dimensional y displacement and the dimensional fluid thickness R. As defined in the
previous section, A1 = εA, and A is the O(1) amplitude while A1 is O(ε). The physical
quantity uy is given by the product of the modulus of the k = 1, n = 1 eigenfunction
ũ(1,1)
y and the critical amplitude A1c, which is obtained by setting dA/dt to zero in the

Landau equation. A1c is therefore given by

(A1c)
2 =

ds0r
dΓ

(Γc − Γ )/s(1)
r , (19)

where Γc > Γ , and the flow is stable according to the linear theory. From equations
(18) and (19) the actual Γ required for instability to finite-amplitude disturbances can
be calculated by prescribing a particular level of disturbances (uy). Table 2 provides
the results of this calculation, where the percentage reduction in Γ is calculated as a
function of percentage increase in |uy|y=0. This table shows that, for all the parameter
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H = 20 H = 10

% increase % reduction % reduction
in |uy |y=0 µr in Γ µr in Γ

2.5 0 0.69 0 0.8337
5.0 0 2.76 0 3.335

10.0 0 11.04 0 13.34
2.5 10 0.774 5 0.7637
5.0 10 3.0 5 3.055

10.0 10 12.38 5 12.22
2.5 20 0.732 10 0.744
5.0 20 2.931 10 2.978

10.0 20 11.726 10 11.9138

Table 2. Reduction in the critical velocity Γ required for instability when the flow is subcritical:
results for grafted gels. Here, |uy |y=0, which is the amplitude of the displacement in the gel at
the interface, is taken to be the value representative of the actual perturbations. The percentage
reduction in Γ is calculated as (Γc − Γ )/Γc × 100, where Γc is the critical velocity predicted by the
linear theory, and Γ is the actual critical velocity due to finite amplitude disturbances.

values shown, the reduction in critical velocity is less than 1% for a disturbance
level of 2.5%, and the reduction is around 3% for a disturbance level of 5%. These
results imply that even though the bifurcation is subcritical in the present case,
relatively weak but finite disturbances do not result in a significant decrease in the
critical velocity required to destabilize the flow, when compared to the predictions
of the linear stability theory. This could be the reason for the consistent agreement
between the experimental results of Kumaran & Muralikrishnan (2000) with the
results of the linear stability theory (Kumaran et al. 1994). This result is in marked
contrast with the behaviour of finite disturbances in plane-Poiseuille flow in a rigid
channel, which is also subcritically unstable. Reynolds & Potter (1967) calculated the
Landau constants for the plane-Poiseuille flow in a rigid channel, and found that even
very weak finite disturbances resulted in a drastic reduction of the critical Reynolds
number. For example, when the disturbance level was assumed at 2.5%, the reduction
in the critical Re from the linear theory value due to finite disturbances was found to
be around 65%. It is also experimentally known that the plane-Poiseuille flow in a
rigid channel does become unstable at values of Re well below the Rec of the linear
stability theory. However, in the present case, the extent of reduction of the critical
velocity is very small for weak but finite disturbances, and hence the flow can be
expected to become unstable only in the vicinity of the critical velocity predicted by
the linear theory.

4.2. Adsorbed gel

For adsorbed gels, the most (linearly) unstable modes have α → 0 (see figure 3).
However, in an experiment this just implies that the wavelength (∼ 1/α) of the most
unstable mode is cut off by the system size. This is in contrast to the case of grafted
gels, where the most unstable modes have αc ∼ O(1), and consequently the weakly
nonlinear analysis should be carried out about this (unique) critical wavenumber.
Therefore, it is important to carry out the weakly nonlinear calculations for a range
of values of αc for adsorbed gels. In the present study, the Landau constants have
been calculated for small values of α (typically α 6 0.1) in the Γ , α neutral curve. A
qualitative summary of the results obtained from the analysis is presented in table 3.
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Figure 4. The variation of the modulus of real part of the Landau coefficient with α (Note that
Re [s1] is negative and only the magnitude of the quantity is plotted above): µr = 0 and for different
values of H .

Re [s1]

H µr = 0 µr = 5 µr = 10

1 positive negative negative
5 positive positive positive

10 negative negative positive
20 negative negative negative
50 negative negative negative

Table 3. Qualitative summary of Landau coefficients for the flow past an adsorbed gel for
different values of µr and H .

The term ‘positive’ in table 3 implies that Re[s1] is always positive for all values of α
for a fixed H and µr , and the term ‘negative’ refers to the fact that Re[s1] is negative
for sufficiently low values of α. This is illustrated in detail for the specific case µr = 0
in table 4, and it can be seen that Re[s1] changes its sign from positive to negative
as α is decreased to lower values and remains negative for α→ 0. The normalization
condition used for determining the eigenfunctions of the linear stability theory is given
by ṽ(1,1)

y (y = 0) = (1 + i). In table 4, only the data for those values of H for which
the Landau constants are negative are presented; the data for the cases where Re[s1]
is always positive are not presented here. The variation of Re[s1] with α is shown
in figure 4 only for the cases where the real part of Landau constant is negative.
This figure clearly shows that Re[s1] ∼ 1/α2 in the limit α � 1. This behaviour was
observed for other values of µr as well. As seen from table 3, there is no systematic
trend for the dependence of the sign of Re[s1] on µr and H . However, from the results
obtained, it can be concluded that for larger values of H(H = 20 and 50 in table 3)
Re[s1] always becomes negative for sufficiently low values of α for all µr . Thus, the
weakly nonlinear analysis reveals that there could be supercritically stable states in
the immediate vicinity of the neutral curve in the limit of low wavenumbers.

The results of the weakly nonlinear analysis also clearly show that when the Landau
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α Re [s1]

H = 10 0.1 153.0135175
0.07 202.702799
0.06 142.509125
0.05 −67.398321
0.0475 −157.300434
0.045 −266.8097432
0.04 −557.460738
0.03 −1598.92959
0.02 −4357.610656
0.01 −18732.27321
0.005 −75963.77863
0.002 −476461.086018
0.001 −1.90985× 106

0.0005 −7.7726185× 106

H = 20 0.1 108.282520
0.05 229.229763
0.02 −625.233424
0.01 −3909.087884
0.005 −16667.46921
0.002 −105782.41004
0.001 −424124.31417
0.0005 −1.70194363× 106

H = 50 0.1 105.466041
0.05 205.486326
0.01 −319.89544
0.0075 −1281.914646
0.005 −3852.405875
0.002 −27409.70771
0.001 −111331.88248
0.00075 −199273.3158
0.0005 −447149.5143

Table 4. Landau coefficients for the flow past an adsorbed gel: µr = 0.

constant is negative, there exists an asymptotic regime where s1r ∼ 1/α2 in the limit
α → 0, where s1r ≡ Re[s1]. However, this behaviour of Re[s1] with α is dependent
on the normalization condition used to determine the eigenfunctions of the linear
theory. For example, a different normalization condition ṽ(1,1)

x (y = 0) = (1 + i) yields
constant Re[s1] in the limit α → 0. The physical velocity components are related to
the product of the amplitudes and the eigenfunctions, and this product is independent
of the normalization used to determine the eigenfunctions of the linear theory. In the
supercritical equilibrium state, the perturbation velocities are given (to O(ε)) by

vy = εAeqṽ
(1,1)
y E(x, t) + · · · , vx = εAeqṽ

(1,1)
x E(x, t) + · · · . (20)

The expression for the equilibrium amplitude (Aeq) that occurs in (20) can be obtained
from the Landau equation by setting the time derivative of A to zero:

(εAeq)
2 =

ds0r
dΓ

(Γ − Γc)/|s1r |, (21)

where Γ > Γc and the flow is linearly unstable. As noted above, Re[s1] ∼ α2, and
ds0r /dΓ ∼ α2 from the low-α asymptotic analysis of the linear stability theory. This
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Figure 5. Schematic illustration of the neutral curve for adsorbed gels. The scales are exaggerated
for clarity; see text for explanation.

implies that Aeq ∼ α2. From equation (20), the physical perturbation velocity vy should
then scale as α2 in the low-α limit, since the normalization used is ṽx ∼ α−1ṽy , and
hence the physical perturbation velocity ṽx ∼ α.

In the expression for Aeq (equation (21)), the numerator goes to zero as α2 in the
limit α→ 0, and the denominator diverges as α−2 in the same limit. This implies that
the most (linearly) unstable mode (α→ 0) will not have the largest amplitude in the
supercritical equilibrium state; rather a mode with finite wavenumber will have the
maximum amplitude. This is explained in some detail in the following discussion.
Consider the schematic neutral curve for adsorbed gels shown in figure 5. Here, Γn(α)
is the functional relation for the linear neutral curve where s0r = 0. As stated before,
a low-α asymptotic analysis of the linear stability problem reveals that, for α→ 0,

Γn(α) = Γ (0) + α2Γ (1) + O(α4). (22)

The quantities Γ (0) and Γ (1) can be readily obtained from a low-α asymptotic analysis
of the linear problem. In the low-α limit, the neutral curve can be truncated to O(α2),
and O(α4) terms are neglected in this analysis. The weakly nonlinear analysis assumes
that we are operating slightly above or below the minimum Γ of the linear neutral
curve. The threshold Γ of the linear neutral is denoted by Γ (0) ≡ Γn(α → 0). If the
velocity of the top plate is fixed at Γ2 given by

Γ2 = Γ (0) + ε2Γ10, (23)

where Γ10 is an ‘experimentally’ fixed O(1) quantity, and ε is the small parameter
discussed in the previous section, and if Γ10 > 0, the linear growth rate can be
expanded as

s0r (Γ2, α) =
ds0r
dΓ

(Γ2 − Γn(α)). (24)

The quantity ds0r /dΓ is readily obtained from the linear stability analysis, and it scales
as α2 for α → 0. The line Γ2 = constant intersects the neutral curve Γn(α) at α = α2

(see figure 5), and the linear growth rate is identically zero at this point. In addition,
the linear growth rate also goes to zero as α2 in the limit α→ 0, and consequently
the equilibrium amplitude is zero for both α → 0 and α = α2. This implies that the
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maximum amplitude will occur for modes with wavenumbers somewhere in between
α = 0 and α = α2. The functional form for the dependence of Aeq on α can obtained
as follows. Since Γ2 = Γ (0) + α2

2Γ
(1) and Γn(α) = Γ (0) + α2Γ (1), we have

Γ2 − Γn(α) = α2
2Γ

(1)(1− α2/α2
2). (25)

The line Γ2 = constant intersects the neutral curve at α = α2, i.e. Γ2 = Γn(α = α2), and
so Γ2−Γ (0) = α2

2Γ
(1). Using the fact that Γ2−Γ (0) is also equal to ε2Γ10 (see equation

(23)), gives α2
2Γ

(1) = ε2Γ10. We are free to choose Γ10 which is an ‘experimentally’
fixed O(1) quantity, and if we choose Γ(10) = Γ (1), we then have α2 = ε. Therefore,
equation (25) becomes

Γ2 − Γn(α) = ε2Γ10(1− α2/α2
2). (26)

The growth rate of the linear theory in the vicinity of the neutral curve then becomes

s0r = ε2 ds0r
dΓ

Γ10(1− α2/α2
2). (27)

The low-α asymptotic analysis of the linear theory indicates that s0r and (hence)
ds0r /dΓ scale as α2. Therefore, the equilibrium amplitude in equation (21) scales as
(after noting that s1r ∼ α−2)

Aeq ∼ α2(1− α2/α2
2)

1/2. (28)

The equilibrium amplitude (for a given fixed Γ10) goes to zero both as α → 0 and
for α = α2, and the maximum amplitude occurs at α∗ ≈ 0.82α2. Thus, the physical
perturbation velocity vy (see equation (20)) will vary as Aeq , since ṽ(1,1)

y was fixed to
be O(1) in the normalization, and the maximum of vy will also occur at α∗ ≈ 0.82α2.
However, vx will vary as α−1Aeq ≡ α(1− α2/α2

2)
1/2, and this will exhibit a maximum at

α∗ = α2/
√

2.

5. Concluding remarks
The weakly nonlinear stability of viscous flow past a flexible surface was analysed in

the limit of zero Reynolds number for two different types of polymer gels: (i) grafted
gels where the polymer chains are anchored to the bottom wall and (ii) adsorbed
gels where the polymer chains are free to slide across the bottom wall. The results
from the weakly nonlinear analysis show that the bifurcation at the linear instability
is always subcritical for the grafted gel for a wide range of parameters (µr and H),
while it could be supercritical for the adsorbed gel in the limit of low wavenumbers.
For grafted gels, it is shown that the reduction in the critical velocity from the linear
theory value due to nonlinear effects of the finite-amplitude perturbations is small.
For example, the reduction in the critical velocity is about 1% for perturbations of
amplitude 2.5% of the channel width. This is in contrast to the weakly nonlinear
studies of the plane-Poiseuille flow in rigid channels, where there is a reduction
of about 65% in the critical Reynolds number due to nonlinear effects when the
velocity perturbation is 2.5% of the maximum velocity. Therefore, the linear stability
studies provide an accurate estimate of the critical velocity in the present case. The
subcritical nature of the bifurcation also implies that there are no new non-laminar
steady states in the vicinity of the critical velocity of the linear theory. While there
is some experimental support for this scenario (Kumaran & Muralikrishnan 2000),
the present analysis was carried out in the low Reynolds number limit and hence
a transition to turbulence at such low Reynolds number seems implausible. Clearly
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further experimental studies are needed to clarify this picture, and there still remain
unanswered questions regarding the nature of the transition. One possible approach
to clarify the nature of transition after the linear instability is to numerically stimulate
the flow past a flexible surface in the limit of low Reynolds numbers. Such a study
can be used to verify the asymptotic results of the present study, and to examine
the actual structure of the non-laminar flow in the limit of zero Reynolds number,
which is a unique feature in flow past flexible solid surfaces. For adsorbed gels, the
weakly nonlinear analysis reveals that there could be supercritically stable states in
the immediate vicinity of the linear neutral curve in the limit of low wavenumber,
for a wide range of parameters. When the bifurcation is supercritical, it is further
shown that the physical quantities will exhibit a maximum equilibrium amplitude at
non-zero wavenumber, even though the most unstable mode in the linear theory has
zero wavenumber. For adsorbed gels, the present study also offers the experimentally
verifiable prediction that the nature of the bifurcation changes from subcritical (at
higher values of α) to supercritical for lower values of α. It is possible to test this
prediction in an experiment by changing the length of the experimental set-up and
thereby varying the range of accessible wavenumbers.
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